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SUMMARY 
An approach for simultaneously assessing numerical accuracy and extracting physical information from 
multidimensional calculations of complex (engineering) flows is proposed and demonstrated. The method is 
based on global balance equations, i.e. volume-integrated partial differential equations for primary or 
derived physical quantities of interest. Balances can be applied to the full computational domain or to any 
subdomain down to the single-cell level. Applications to in-cylinder flows in reciprocating engines are used 
for illustration. It is demonstrated that comparison of the relative magnitude of the terms in the balances 
provides insight into the physics of the flow being computed. Moreover, for quantities that are not conserved 
at the cell or control volume level in the construction of the numerical scheme, the imbalance allows a direct 
assessment of numerical accuracy in a single run using a single mesh. The mean kinetic energy imbalance is 
shown to be a particularly sensitive indicator of numerical accuracy. This simple and powerful diagnostic 
approach can be implemented for finite-difference, finite-volume or finite-element methods. 

KEY WORDS Computational fluid dynamics Error estimates Diagnostics 

1. INTRODUCTION 

In many applications, multidimensional computational fluid dynamics (CFD) is emerging from 
research status to become an engineering tool. This transition has been fuelled by the rapidly 
declining cost-to-performance ratio of computer hardware, by advances in interactive pre- and 
post-processing software, and by progress in numerical algorithms and physical submodels that 
enables the computation of complex flows typical of engineering applications. In the automotive 
industry, CFD is being applied (among other things) to in-cylinder flows in reciprocating engines 
to generate new insight into physical processes occurring inside the engine cylinder,'-4 to 
generate generic design guidelines through parametric studies, and to analyse and suggest 
improvements to specific engine  design^;^ most applications of the latter type remain proprietary. 

Computational capabilities often strain diagnostic capacity. While impressive graphics are 
routinely presented, quantitative analysis to extract the wealth of information that is implicit in 
multidimensional calculations generally has not kept pace with our capacity to compute ever 
more complex flows. At the same time, measures of numerical accuracy are needed to provide an 
indication of the degree to which the computed results are faithful to the underlying (modelled) 
partial differential equations. Continued progress in the modelling of flows such as those in the 
cylinder of a reciprocating internal combustion engine demands that numerical accuracy be 
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quantified and isolated from submodel performance (e.g. turbulence, turbulent combustion and 
fuel-spray models). 

It is the purpose of this paper to introduce and demonstrate the utility of a simple yet powerful 
diagnostic approach that can be applied to assess numerical accuracy and to yield insight into 
physical processes. This approach is intended for application to complex engineering flows in 
particular, and may eventually provide the basis for an adaptive gridding scheme. 

The remainder of the paper is organized as follows. Section 2 provides further background on 
the issues of numerical accuracy and physical diagnostics. Balance equations are introduced in 
Section 3. In Section 4, the CFD code in which the balances have been implemented is described. 
Example results for two in-cylinder configurations are presented in Section 5, and finally, results 
are discussed and conclusions are drawn in Section 6. An appendix contains details of the balance 
equations. 

2. BACKGROUND 

Numerical accuracy diagnostics 

Low-order numerical methods and simple physical submodels (e.g. the two-equation k-& 
turbulence model) contribute to the robustness and computational efficiency that are required of 
an engineering CFD code. However, this same robustness and speed make it imperative that 
error estimates be available so that plausible-looking results are not confused with accurate 
results, even if it is trends rather than absolute values that one is interested in capturing. A second 
motivation for providing error estimates is to separate numerics from the influence of modelling 
assumptions. Because it is difficult to isolate numerical accuracy from model performance in 
complex flows, numerically generated flow phenomena may erroneously be attributed to physical 
submodel behaviour, leading to specious model development and calibration exercises. Numer- 
ical accuracy has been cited by modellers in diverse disciplines as an issue in the development and 
application of advanced turbulence models to three-dimensional flows of practical interest6 - 

Formal error estimates for grid-based numerical schemes may be based on Taylor-series 
expansions' or Fourier analysis." These analytic approaches are valuable in the development 
and evaluation of numerical methods for model problems. The usual method for assessing 
numerical accuracy in complex flows (in cases where it has been assessed at all) is through grid 
refinement. In this approach computations are repeated on progressively finer (or coarser) meshes 
and resolution is presumed to be adequate when results do not change significantly with mesh 
density. Estimates of the local converged solution can be made by extrapolating solutions 
obtained on two or more grids. 

Clearly systematic grid refinement is a valid approach to error estimation. It is, in fact, the basis 
for evaluating the present balance approach in the examples cited in Section 5. However, the 
routine application of grid refinement to 'production' CFD is problematic for several reasons. 
(1) The leading-order term in a Taylor-series analysis of a spatial discretization scheme provides 
a meaningful estimate of convergence rate only in the limit as the grid spacing approaches zero. 
Extrapolation to zero mesh spacing of results computed on two or more finite-resolution grids 
will be misleading outside of this 'radius of convergence'. One cannot know a priori if a given 
mesh and numerical scheme lie within this limit; a single-run, single-mesh measure of numerical 
accuracy is needed. An example is given in Section 5 where even for a relatively simple flow (and 
axisymmetric, simple orthogonal grids), grid refinement on meshes that normally had been 
considered to be adequate yields misleading estimates of the converged solution. (2) Meshes for 
three-dimensional time-dependent internal flow problems such as in-cylinder flow in a reciprocat- 
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ing engine rarely exceed 250 000 grid points; more usual is CFD on grids an order of magnitude 
coarser. Even a 1000000-cell mesh represents a nominal grid spacing of just 100 cells per spatial 
direction. For an in-cylinder problem, this corresponds to cells of about 1 mm3, barely adequate 
to resolve the turbulence integral length scale. The difficulty of grid generation and the magnitude 
of computational resources required for such problems preclude the routine use of grid-sensitivity 
tests. Again, single-run assessments of numerical accuracy are needed. (3) In complex geometric 
configurations, numerical errors resulting from non-uniform spatial distribution of grid points 
and strong departures from grid orthogonality are more difficult to quantify than errors due to 
grid spacing alone. Systematic assessment of grid-sensitivity in such cases demands that both 
mesh topology and mesh density be varied. Mesh topology is often difficult to change for 
practical internal flow configurations. 

In the present work, balances of numerically non-conserved quantities (i.e. quantities that are 
not conserved at the cell or control volume level in the construction of the numerical scheme) 
provide the basis for numerical error estimates. By comparing the magnitude of individual terms 
in the volume-integrated balance equation for a non-conserved flow variable with the difference 
between the right- and left-hand sides of the equation, the relative magnitude of numerical error 
compared to physical effects can be assessed directly. Positive aspects of this approach are (1) it is 
independent of the numerical method (finite-difference versus finite-volume versus finite-element 
method) and of the order of the differencing scheme (e.g. upwind versus central differencing); (2) it 
can be performed over the full computational domain or over any subdomain down to the level of 
individual cells, or simultaneously over several levels; (3) it is readily implemented for complex 
flows; and (4)it provides a direct assessment of accuracy in a single run. For finite-element 
methods, residual-based local and global error estimates can be made," but no comparable 
measures are available for finite-difference or finite-volume methods.* Clearly, global balances do 
not capture all manifestations of numerical inaccuracy. Here the intent is to ensure that low-order 
spatial discretization error (primarily numerical diffusion) is small compared to dominant 
physical processes. That this approach does provide useful insight is demonstrated by the 
examples in Section 5. Global balances were used in a limited sense as diagnostics of numerical 
accuracy in earlier ~ o r k . ~ , ' ~  

Physical diagnostics 

Because of the overwhelming quantity of information generated in three-dimensional CFD, 
recent emphasis in post-processing has been in interactive  graphic^.'^. l4 Quantitative analysis 
has often been limited to a small number of problem-dependent global quantities (e.g. total 
angular momentum and turbulence level for in-cylinder at the other extreme are flow 
topology diagnostics for fundamental studies of hydrodynamics."* l6 A level of diagnostics 
intermediate between global parameters and three-dimensional vector fields and topology maps 
is needed to exploit more fully the wealth of physical information implicit in engineering 
computations. (Here it is understood that results are 'physical' to within the limits of the models 
being used.) Global balances provide tractable intermediate-level information on the contribu- 
tion of different physical processes in the flow domain. 

The same volume-averaged balance equations that are used to assess numerical accuracy also 
provide physical information. Local budgets of turbulence kinetic energy production and other 
modelled processes have been employed in the evaluation of turbulence models by many 
authors.". Global turbulence kinetic energy balances have been applied to in-cylinder flows by 

* Preliminary work suggests that equivalent estimates can be constructed for finite-volume methods. 
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Gosman et al.' to investigate turbulence production by tumbling motion (rotation of the 
in-cylinder fluid about an axis normal to the cylinder axis). This analysis was expanded by 
Haworth et aL3 who invoked budgets of in-cylinder angular momentum and mean turbulence 
kinetic energy to investigate induction-generated flows and turbulence production for four 
different intake configurations. In the present paper, a systematic development of global balances 
as a tool for extracting physical information and for estimating numerical accuracy is presented. 

3. BALANCE EQUATIONS 

We begin with the partial differential equation governing a flow variable of interest @=@(?, t). 
Here CD can represent mass, a component of linear or angular momentum, a species mass fraction, 
kinetic energy or any other quantity of interest, 

aa, amu aRlj 
at axj axj 
--+'=- +R2. 

Here U j  is the jth component of fluid velocity. The terms on the right-hand side have been 
decomposed into a contribution R1 that is expressed as a divergence-of-a-flux and a non- 
divergence contribution R2. Further decomposition is often appropriate to distinguish among 
physical processes or contributions from different boundaries (see appendix and Section 5). By 
integrating equation (1) over a time-dependent volume V(t) (the computational domain or 
a subdomain) and manipulating the result, a balance equation results: 

The notation is the same as that introduced in the appendix: dz represents a volume element in 
V(t), S( t )  is the (deforming) surface of V(t) with outward-pointing surface-element vector dA and 
U,,j is the jth component of the fluid velocity relative to the moving boundary. 

The imbalance A 6  is taken to be the difference between the left- and right-hand sides of 
equation (2), 

A@=&?, @ d z +  6,: Urclj +IS(?) R,j dAj- J",, R2 dz. (3) 

Clearly, A 6  is identically equal to zero. However, in a numerical representation of equation (l), 
Ad)",,,,, is non-zero unless the numerical scheme has been constructed specifically in a manner that 
conserves CD at the cell or control volume level. While most CFD codes conserve the primary 
quantities that are being solved for (usually density or mass and linear momentum), fewer 
conserve derived quantities such as angular momentum and kinetic energy. In the limit of 
a converged numerical solution, all primary and derived quantities are conserved: hence im- 
balances in angular momentum, kinetic energy and higher moments can be expected to reflect 
numerical inaccuracy. 

Numerical schemes that conserve angular momentum have been constructed and imple- 
mented.", '' Similarly, one might construct methods that conserve kinetic energy or other 
quantities of special interest in particular applications. However, all physical quantities (e.g. all 
moments of linear momentum) cannot be conserved simultaneously; in any numerical approach 
there will be non-conserved quantities to serve as candidates for numerical accuracy assessment. 

The behaviour of the imbalance term in equation (3) can vary depending on the quantity a. For 
example, the energy-dissipating nature of the truncation error for convective discretizations 
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including standard upwind, third-order upwind and non-linear monotone methods has been 
established el~ewhere.~, 20,21 This provides a sound basis for expecting the imbalance in mean 
kinetic energy to behave as a dissipation term (AdpI,,,<O, IA&,,l decreasing with improving 
spatial resolution) for these schemes. For other numerical methods or other physical quantities, 
the imbalance can be of either sign; one can say only that the imbalance approaches zero in the 
limit of a converged solution. A single non-negative modulus can be defined as in equation (16), 
for example. 

Global balance equations for linear momentum, angular momentum, mean kinetic energy and 
turbulence kinetic energy are given in the appendix. For purposes of illustration, these equations 
have been derived for Favre-averaged mean quantities in the context of a k--E turbulence model, 
but the approach is applicable to any set of partial differential equations. 

4. FLOW CODE 

While the balances are generic, it is imperative that the discretizations used to approximate the 
integrals in equation (3) small be consistent with the discretization scheme used to solve the 
governing partial differential equations (equation (1)). If the two are not compatible, large 
numerical errors may result, confounding attempts to extract meaningful information from the 
balances. Some details of the solution procedures are thus germane to interpretation of the 
results. 

In the code used for this study, an unstructured mesh of hexahedral ‘brick’ elements is used to 
discretize the field equations in a finite-volume formulation.22 Turbulent flow is treated conven- 
tionally by solving for ensemble-averaged variables with a two-equation k- E turbulence 
The equations solved are the compressible, time-dependent, Favre-averaged equations for mo- 
mentum, pressure, internal energy, species transport, turbulence kinetic energy k and the viscous 
dissipation rate of turbulence kinetic energy E.  Density is specified using an equation of state. 

A parameter y controls the blend of standard upwind and central differencing for the convec- 
tive terms in the mean momentum equations such that y =O for pure upwind and y = 1 for pure 
central; central differencing was implemented using a deferred correction technique for stability. 
Centred differences are used for diffusion terms. Temporal advancement is implicit, with pres- 
sure-velocity coupling through a modified PIS0 algorithm.24 The k--E equations are not 
implicitly coupled with the momentum, energy and pressure solutions, but are solved iteratively 
at the end of each time step. 

To accommodate deformation of the computational mesh, an arbitrary Lagrangian-Eulerian 
(ALE) technique was adopted.” This permits the grid to move but does not by itself specify the 
motion of the grid points in response to boundary motion (piston and valves in our reciprocating- 
engine examples). Mesh integrity (minimal departures from orthogonality, positive Jacobians, 
etc.) is maintained by a mesh-deformation algorithm in which a field equation for grid-point 
velocities is solved with the prescribed boundary velocities as boundary  condition^.^ 

At solid walls, fluid mean velocities are set to the boundary velocity U,. Standard wall- 
functions are used to set the level of the wall shear stress in the momentum equation and the 
dissipation rate in cells adjacent to the wall.23 Normal stress terms (contributions from compo- 
nents normal to the boundary in the second term on the right-hand-side of equation (7)) were 
neglected in the momentum equations and hence in the computation of global balances. Stress 
terms on flow boundaries (i.e. the last term on right-hand-side of equation (10) at inflow/outflow 
boundaries) were neglected in the global balances. 

All dependent variables are located at cell centres. Pressure forces in the momentum equation 
are treated by averaging the cell-centre pressures to obtain cell-face values; the treatment is such 
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that the pressure forces exerted on two elements sharing a common face differ if cell-face areas 
vary in the direction of the force. Thus, a component of linear momentum is a conserved quantity 
only in the case where the cell-face areas are uniform in the direction of interest. Angular 
momentum components, mean kinetic energy and turbulence kinetic energy ,& are not 
conserved at the cell level. 

First-order accurate time differences were used to compute the time-rate-of-change terms in 
the balances: in time-dependent flows, this results in an imbalance of order At (the computational 
time step) in the calculation of global balances for conserved variables. For non-conserved 
quantities, the imbalance remains non-zero and almost independent of time step for sufficiently 
small time steps. Linear momentum imbalance contributes to the imbalance in angular mo- 
mentum. As argued earlier, imbalance in is expected principally to reflect low-order spatial 
discretization errors and thus should be a good measure of numerical accuracy. Imbalance in 
results in addition from the non-implicit nature of the k--E solution and is less reliable as an 
indicator of discretization error. 

5. APPLICATIONS 

The utility of the balances is demonstrated through applications to flows in reciprocating engines. 
In the first example, the flow in an axisymmetric piston-cylinder assembly is computed; in the 
second, computations for a production four-valve-per-cylinder engine are reported. Various mesh 
densities and spatial differencing schemes were used in each case. The flows are complex, 
particularly for the production engine configuration, so that the benefits of the diagnostics for 
engineering flows will be amply demonstrated. 

Axisymmetric piston-cylinder assembly 

The axisymmetric piston-ylinder assembly is shown in Figure 1. Flow enters and leaves the 
cylinder through an annular port at an angle of 30 O with respect to the cylinder axis. The piston is 
driven in simple harmonic motion at 200 rpm through a 60 mm stroke with a geometric 
compression ratio of 3: 1. LasercDoppler anemometry was used to extract radial profiles of mean 
and RMS axial velocity at several crank-angle positions during intake and compression.26 This 
flow has been the subject of numerous modelling s t u d i e ~ , ~ ~ - ~ ~  and the reader is referred to these 
studies for details of the flow and for comparisons between computations and measurements. 
Example comparisons between computed and measured mean axial velocities at 36" after 
top-dead-centre (TDC) are shown in Figure 2. It can be Seen that agreement is good except at the 
second measurement station, where the computed profile undershoots the measured one. 

Wedge-shaped computational meshes were used with the number of cells in the radial direction 
n, equal to the number in the axial direction n, and a single cell (So wide) in azimuth. 
A non-uniform intake mean velocity profile was assumed, as shown in Figure l(b). Meshes were 
uniform in z but non-uniform radially to accommodate the intake orifice (Figure l(c)). A com- 
putational time step of 0.5 crank-angle degrees was used. With this value, results are independent 
of time step except as noted. 

Local convergence is illustrated in Figure 3. There, the computed peak mean axial velocity at 
the measurement station closest to the head plane at 36 O after TDC (Figure 2) has been plotted as 
a function of mesh spacing n, and of differencing parameter y. It can be seen that convergence is 
slow. By performing grid refinement tests with y = 0 on 28 x 28 and 43 x 43 meshes, one might be 
inclined to interpret the small changes in computed profiles as near grid independence, while in 
fact the mean velocity has attained only about two-thirds of its converged value and convergence 
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is non-linear. While a formal Taylor series analysis for any y c 1 shows that convergence should 
be linear in the mesh spacing, such an analysis is meaningful only in the limit as the mesh spacing 
approaches zero. A final point is that increasing the spatial accuracy of the convective differencing 
scheme is an effective approach to improved accuracy: an order-of-magnitude increase in the 

wall (head) 

symmetry planes 

axis of wmm 

Figure 1. (a) Axisymmetric piston+ylinder assembly,26 (b) intake mean axial velocity profile, (c) computational config- 
uration (n,=n,= 15) 
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number of computational cells with y =O gives the same improvement as increasing y from 0.0 to 
0.7 with n,=28. These results are typical of our experience with in-cylinder and other internal 
flows. 

The evolution with crank angle 0 of the global in-cylinder mean (R, equation (14)) and 
turbulence (5 equation (1 1)) kinetic energy is shown in Figure 4 for various n, and y. Both R and 

o 7 = 0.0 (linear upwind) 
A 7 = 0.3 
V 7 = 0.5 

7 = 0.7 
7 = 1.0 (central) 

, I 

0 10 20 30 (mm) 

Figure 2. Computed (bold solid lines) and (symbols, light dashed lines) mean axial velocity profiles at 36" 
after TDC normalized by the mean piston speed Vp=0.40m s-', axisymmetric configuration. Computations are for 

a 50 x 50 mesh with y = 0.9 

n, = 126 88 62 43 28 

I4 

Figure 3. Peak mean axial velocity at z=10 mm versus grid spacing n;' and differencing scheme y, axisymmetric 
configuration: (0) y=O.Q ( A )  y=O.3; (0) y = 0 5 ;  (0) y=0.7 
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1; increase with increasing spatial resolution and with higher-order differencing. This is consistent 
with the steeper mean velocity gradients that result from higher n, and/or larger y (Figure 3). 

Mean kinetic energy balances are shown in Figure 5. The dominant term in equation (15) here 
is the pressure-velocity term PRES, which was split into contributions from the moving piston 
PRES, and from the intake/exhaust orifice PRES,: these two are almost equal and opposite. Four 
orders of magnitude smaller are the flux term FLUX, the imbalance IMBAL, the turbulence shear 
production PRl and the time rate-of-change terms DMDT and D/DT; the remaining terms are 
negligible. It can be seen that IMBAL is negative in all cases, indicating a numerical loss of mean 
kinetic energy, as expected. 

A single number that expresses the numerical loss of kinetic energy over the engine cycle is the 
normalized time integral IMBAL (equation (16)). This value is reported in Table I(b) along with 

...... . f . .  i c  2.5 . .  Legend 
15 X 15, y=O.O 

15 X 15, y=O.9 

60 X 60, r=O.O 
- - - - - - - -  
60 X 60, y=O.9 ............................................... 

" ---I--- ~ , 
I I I 
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0 

Figure 4. Evolution of global kinetic energy, axisymmetric configuration: (a) mean kinetic energy a; (b) turbulence 
kinetic energy L 
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Figure 5. Mean kinetic energy balances, axisymmetric configuration: (a) n, = 15, y = 0.0; (b) n, = 60, y = 0.9 

the normalized integrals of each of the other terms in equation (15). The magnitude of IMBAL 
decreases with increasing spatial resolution and with higher-order convective differencing, which 
suggests that indeed, imbalance in k is a useful indicator of low-order numerical errors. 
A normalized imbalance of unity (IMBAL = 1) does not imply 100% error in R or in dR/dt. It 
can be seen in Figures 4 and 5 that dk/dt does not absorb the entire decrease in IMBAL with 
improved numerical accuracy. Little further change in computed mean and RMS velocity profiles 
results with grid refinement beyond 60 x 60 with y =0.9 (IMBALw 1.0). 

The only non-zero component of angular momentum is that about the y axis (Figure 1). The 
imbalance in this quantity is small in all cases (IMBALC0.1) and shows little response to grid 
refinement and spatial differencing (Table I(a)). Angular momentum imbalance in this example is 
probably dominated by the cell-face pressure imbalance in the radial direction. This and the order 
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Table I. Non-dimensionalized time-integrated (from 0" to 360") terms in global balance equations for the 
axisymmetric piston-cylinder assembly (normalized as in equation (16)): 

(a) y angular momentum (equation (13)) 
- - - 

nr Y FLUX PRES, SHEAR PRES, PRES, IMBAL 

15 0.0 1.77 6.15 x 105 0.035 6.26 x lo5 1.16 x lo4 0085 
30 0.0 1.81 5.51 x 105 0.037 5.61 x lo5 1.04 x lo4 0.069 
60 0.0 1.84 4.99 x 105 0.062 5.09 x 105 947 x 103 0082 

15 0.9 1.75 6.05 x 105 0.036 6.16 x lo5 1.15 x lo4 0063 
30 0.9 1.70 5.22 x 105 0.057 5.31 105 9.88 x 103 0.072 
60 0.9 1.62 4.45 x 105 0.082 4.53 105 8.43 x 103 0.099 

(b) Mean kinetic energy K (Equation (15)) 
- - -  - - ~~ 

n r  Y m, PDIV PRES, FLUX PR1 PR2 PR3 DMDT IMBAL 

15 0.0 6.92 x lo4 0.0101 6.92 x lo4 10.16 1.47 1.33 x 8.42 x 0.36 6.94 
30 0 0  5.97 x lo4 0.0114 5.97 x lo4 9.96 1.66 1 . 5 9 ~  1 . 3 0 ~  lo-' 0.37 5.81 
60 0.0 4.88 x lo4 0.0113 4.88 x lo4 9.10 2.52 1 . 7 4 ~  2.69 x lo-' 0.38 3.93 

15 0.9 4.49 x lo4 0.0055 4 . 4 9 ~  lo4 6.59 1.90 1 . 0 2 ~  loT3 6.03 x 035 2.97 
30 0.9 3 . 8 0 ~  lo4 00048 3 . 8 0 ~  lo4 6.29 2.48 1.15 x 9 . 1 8 ~  037 1.92 
60 0.9 3 . 4 7 ~  lo4 0.0062 3.47 x lo4 6.46 3.40 1.36 x 2.03 x lo-' 0.37 1.03 

(c) Turbulence kinetic energy (Equation (12)) 
- - - -~~ 

n* Y FLUX PR 1 PR2 PR3 DISS DMDT IMBAL 

15 0.0 2.1 1 6.68 6.05 x 3.82 x lo-' 5.17 0.42 2.32 
30 0.0 2.16 759 7.26 x 5.94 x 10- 6.49 0.40 1.44 
60 0.0 2.17 900 6 . 2 4 ~  9 * 6 3 ~ 1 0 - '  754 0.40 079 

30 0 9  1.29 8.55 3.97 x 3.16 x 6.65 0.37 1.69 
60 0-9 1.42 9.85 3.93 x 5.89 x low5 8.16 0.38 1.02 

15 0.9 1.15 7.0 1 3.75 10-3 2.22 x 10-5 4.89 035 2.40 

At time differencing contribution can explain the insensitivity to n, and y. Pressure torques on 
walls (PRES,), on the inlet orifice (PRES,), and on the symmetry planes (PRES,) sum nearly to 
zero. 

The final budget is that for turbulence kinetic energy $ (Figure 6,  Table I(c)). The magnitude of 
each dominant term in the balance (FLUX, PR1, DISS), and more significantly, of the relative 
magnitude of the physical terms compared to the imbalance, increases with improved spatial 
resolution. 

The results, shown in Figures 3-6 and Table I suggest that reasonably grid-independent results 
(IMBAL I 1 in I?) for this relatively simple problem can be obtained with central differencing on 
a 60 x 60 grid; extrapolation implies that 240 x 240 may be required for comparable accuracy 
with standard upwind differencing. The global results are consistent with the local convergence 
results of Figure 3. Since CPU time is proportional to the number of computational elements 
while central differencing (y = 1) increases computational time by just 15-20% compared to y =0, 
it is cost effective to invoke the higher-order spatial discretization scheme. 
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Figure 6. Turbulence kinetic energy balances, axisymmetric configuration: (a) n, = 15, y = O Q  (b) n, = 60, y =0*9 

Production four-ualue-per-cylinder engine 

The second example is a production four-valve-per-cylinder engine (Figure 7). The operating 
conditions summarized in Table I1 were selected to match combustion experiments in this engine: 
one intake valve is inoperative, and the active valve has a reduced lift and is equipped with a 90" 
shroud that directs the flow entering the cylinder in the +x direction. 

Computations begin at intake-valve opening (IVO) and are carried to TDC compression. 
A pressure corresponding to the intake-manifold pressure is applied at the upstream end of the 
intake port and fresh charge is drawn into the cylinder as the valve opens and the piston moves 
downward. A variable computational time step is used, ranging from 1/16' at low valve lift to 1" 
through most of the calculation. Again, this was found to yield results that are reasonably 
time-step independent. 
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s y 
Top View 

Figure 7. Production four-valve-per-cylinder port-and-cylinder mesh, with axis orientation: z axis coincides with cylinder 
axis 

Global quantities of particular interest for in-cylinder flows include the in-cylinder 'swirl' 
(angular momentum about the cylinder axis) and 'tumble' (angular momentum about an axis 
normal to the cylinder axis), the mean kinetic energy If and the turbulence kinetic energy c. 
In-cylinder turbulence levels at the time of ignition and burning (starting at about 30" before 
TDC compression) influence the flame propagation speed, and hence combustion performance. 
Mean kinetic energy is the 'reservoir' of energy available for turbulence generation, while swirl 
and tumble characterize the flow structure in which that energy is stored. 

The global balances were performed in the in-cylinder subregion: thus the valve annulus 
(subscript f for 'flux boundary' in the following) forms one boundary of V(t). Integrated imbalance 
terms are summarized in Table 111, where n, denotes the total number of cells. Separate results are 
given for IVO-to-540" and for IVO-to-720" to emphasize differences between intake and com- 
pression. Examples of angular momentum balances are shown in Figure 8. Influx of axial angular 
momentum through the valve annulus dominates the evolution of in-cylinder swirling angular 
momentum (D/DT tracks FLUX, Figure 8(c)); wall-pressure torque and influx are comparable for 
x tumble (Figure 8(a)) early on intake, while wall pressure dominates later, and wall pressure 
dominates throughout intake for y tumble (Figure 8(b)). There is a marked improvement in 
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Table 11. Engine specifications and operating conditions 

Bore 92.0 mm 
Stroke 850 mm 
Connecting rod 147.5 mm 
Compression ratio 9.3: 1 
IVO 
IVC 
Max valve lift 
Valve shroud 
Engine speed 1300 rpm 
Manifold pressure 62 kPa 
Manifold temperature 378 K 
IVO in-cylinder pressure 73 kPa 
IVO incylinder temperature 778 K 

379" after TDC (lift = 0.35 mm) 
565" after TDC.(lift =0.35 mm) 

5-57 mm at 471" after TDC 
90", facing + x (Figure 7) 

Table 111. Non-dimensionalized time-integrated (from IVO to 0) imbalance terms for the production 
four-valve-per-cylinder engine [normalized as in equation (16)] 

22 920 
39 780 
65 383 
39 780 
39 780 
22 920 
39 780 
39 780 

0-0 540" 
0.0 540" 
0.0 540" 
0 9  540" 
1 a 0  540" 
0.0 720" 
0.0 720" 
0.9 720" 

0.3 1 
0.25 
019 
016 
0.15 
0.28 
0.2 1 
0.12 

1.05 
086 
0.58 
0.56 
056 
0.82 
0.64 
0.38 

0.74 
0.67 
0.55 
0.28 
0.16 
0.72 
0.63 
0-30 

7.86 
7.43 
6-72 
4-86 
3.40 
7.48 
6.8 1 
4-63 

14.10 
10.40 
6-44 
7.74 
7.86 

13.61 
8.73 
7.57 

angular momentum imbalance with grid refinement and with higher-order convective differenc- 
ing (Table 111). 

Mean kinetic energy balances (Figure 9) again reveal the dominance of pressure-work terms; 
the pressure-divergence term becomes important during compression. Imbalance decreases both 
with n, and with y (Table 111). As before, higher-order numerics is a more cost-effective route 
to improved accuracy than grid refinement. Even for the best case reported in Table 111, 
IMBALg = 3.4, indicating that results are not yet grid independent. Turbulence kinetic energy 
balances are shown in Figure 10. For the first-order upwind scheme, numerical dissipation 
(IMBAL) is comparable in magnitude to the viscous dissipation (Table 111). The relative magni- 
tude of the imbalance improves with spatial resolution and with differencing, although it remains 
large even for the best case shown. The explicit k--E treatment probably contributes to the large 
imbalance. 

Computed peak energies and bottom-dead-centre (BDC) energies and angular momentum are 
summarized in Table IV. The strong influence of numerics on these important global quantities is 
clear. Differences among computed values of R and ff diminish during compression (see also 
Figure 4): higher K yields higher turbulence production which acts to reduce k, and higher is 
associated with higher turbulence dissipation rates. While increasing the number of computa- 
tional elements by a factor of three results in relatively little improvement in computed swirl, 
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Figure 8. Angular momentum balances, production configuration, nc = 39 780, y = 0.9 (a) x; (b) y; (c) z 

improved spatial differencing yields significant improvement. The measured BDC swirl ratio 
(determined from steady-flow measurements and a zero-dimensional engine sirnulati~n)~' ranges 
from 5.0 to 6.6. 

Figures 8-10 and Tables I11 and IV amply illustrate the well-known deficiencies of standard 
upwind differencing. Some 500 000 cells with upwind would be needed to reduce IMBAL to the 
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Figure 9. Mean kinetic energy balances, production configuration, nc = 39 780, y =09 (a) IVO-IVC; (b) IVC-710" 

level achieved using 40 000 cells with central differencing. Even for central differencing, results are 
not fully grid-independent on the 4OOOO-cell mesh. A practical upper limit for time-dependent 
three-dimensional in-cylinder computations at present is about 250 OOO (% 653) cells. 

We conclude with an illustration of the physical insight that can be gained using the balances. 
Because induction-generated turbulence has largely dissipated by IVC (Figure the bulk fluid 
motion is important for its potential to generate additional turbulence close to TDC, thereby 
enhancing the burn rate. In References 1 and 3, global balances were employed to elucidate 
a mechanism for turbulence production through the breakdown of large-scale motions. Briefly, it 
was found that tumble is more effective than swirl in generating late-compression turbulence. 
Tumble more efficiently extracts energy from the piston motion during compression. This is 
reflected in the 'spin-up' in the x and y components of angular momentum after W, while 
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Table IV. Peak and BDC mean and turbulence kinetic energy, and BDC swirl ratio SR, and tumble ratios 
TR, and TRY for the production configuration. Peaks occur near 420" after TDC in all cases. Swirl and 
tumble ratios are the angular momentum about the specified axis, divided by the fluid moment of inertia 

about that axis, and normalized by the crankshaft angular speed 

nc Y g p c a k  gpeak Z B D C  lBDC TRX TRY SRZ 

22 290 0.0 1402 982 162.3 8.49 075 1.70 3.61 
39 780 0 0  1474 128-0 20 1 *o 12.2 077 1.83 3.75 
65 383 0.0 1550 201.0 236.3 23.3 093 1.96 4.05 
39 780 0 9  2232 3990 339.3 28.0 070 230 4.89 
39 780 1-0 2293 4800 355-1 32.0 075 2.29 5.03 
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Figure1 1. Volume-integrated components of turbulence shear production (nine (i,j] contributions summed to yield Pip, 
in Equation (9)) versus crank angle, production configuration, nc = 39 780, y =0.9 1 = x; 2 = y; 3 = z 

swirl simply decays (Figure 8); the rate-of-decrease of mean kinetic energy is small at this time 
(Figure 9(b)). As the in-cylinder aspect ratio (height-to-bore) continues to decrease, a single 
cylirider-iilling tumble vortex no longer 'fits' and small-scale turbulence is generated as the 
tumble breaks down. This can be seen in the later drop in x and y angular momentum (Figure 8), 
the simultaneous large negative dK/dt (Figure 9(b)), and positive dg/dt from 640" to 690" 
with large PRl (Figure 10(b)). Further evidence supporting the contention that it is tumble, and 
not swirl, that is responsible for this pre-TDC turbulence is given in Figure 11. There the volume 
integral of each of the nine ( i ,  j )  components that are summed to yield the total turbulence shear 
production (P lPk  in equation (9)) has been plotted. The dominant terms late during compression 
are (3, 1) = (z, x) and (3, 2) = (z, y): these correspond to velocity gradients representing rotations 
about the 267) and 1 (x) axes, respectively. 

6. DISCUSSION 

It has been demonstrated that imbalances in quantities not conserved at the cell level can be used 
as indicators of numerical accuracy in complex time-dependent internal flow problems. By 
comparing the magnitude of the imbalance to physical terms in the balance equations, the relative 
influence of discretization error compared to physical processes is revealed directly. For specific 
numerical schemes (e.g. upwind differencing of the convective operator), the energy-dissipating 
character of the truncation error suggests that the imbalance in mean kinetic energy should be 
particularly useful as a measure of low-order spatial discretization errors. 

For other numerical schemes and other physical quantities, the imbalances approach zero in 
the limit of a converged solution. Monotonic convergence of the imbalances in angular mo- 
mentum and turbulence kinetic energy with improving spatial accuracy has been found in all 
flows examined to date, provided that time-stepping error and cell-face pressure imbalances are 
sufficiently small. The magnitude of the imbalance terms decreases with increasing mesh density 
and with the implementation of higher-accuracy spatial discretization schemes. By contrast to 
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grid refinement, this approach allows a direct assessment of numerical accuracy in a single- 
computational run using a single mesh. Although the present approach is not expected to capture 
all manifestations of numerical inaccuracy, it does provide useful guidance for the modeller in 
determining to what extent results may be tainted by numerical error. 

Balances can be applied over the entire solution domain or over subdomains down to the 
individual cell level. The present examples were limited to large subdomains. In applications, we 
routinely divide the computational domain into several subdomains (e.g. intake ports, in-cylinder, 
exhaust ports) based on the physical information sought. 

The examples presented here were limited to blends of upwind and central differencing because 
these are the schemes that are available in the unstructured hex-mesh code employed for this 
study. Although results are markedly improved with the second-order scheme, second-order 
differencing is not a panacea to the numerical accuracy issue. The balances suggest that numerical 
accuracy remains marginal, at best, for the second example problem (practical port-and-cylinder 
configuration) even with central differencing. Moreover, the reduced stability of the central- 
differencing scheme makes it less attractive for ‘production’ CFD applications. Higher-order 
methods such as the third-order upwind scheme used in the in-cylinder computations of 
Reference 20 may yield further improvements. There remains a strong incentive for continuing 
research into improved discretization schemes to address the often conflicting requirements of 
accuracy, robustness and geometric flexibility. 

In addition to numerical accuracy information, the relative magnitude of each term in the 
balances provides insight into the physical processes occurring in the volume of integration. The 
utility of this aspect of the balances has been illustrated through application to a production 
four-valve-per-cylinder engine: differences between swirl and tumble have been pointed out both 
in their generation and in their capacity to generate turbulence. 

To improve further the utility of multidimensional modelling, research into advanced sub- 
models for turbulence, turbulent combustion and fuel sprays is in progress. Numerical error 
estimation and control are prerequisites to the successful implementation and application of these 
models. The strong inhence of numerics on computed angular momentum and has been 
demonstrated. Species mixing, turbulent combustion and spray models all require turbulence 
intensity and scales as input. Attempts to calibrate or apply these models without understanding 
and controlling numerical errors will hinder progress in advanced modelling. 

It is likely that a combination of local and global error estimates will prove most viable as 
a strategy for automated error estimation and correction (e.g. via adaptive grid refinement). Work 
is ongoing to relate cell-level imbalances with other local error estimates, to further correlate local 
imbalances with global imbalances, and to devise adaptive meshing strategies based on these 
imbalances. 
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APPENDIX 

In this appendix derivations of global balance equations are sketched. Briefly, the balance for any 
quantity CP = @(x, t) (scalar or vector component) is derived by integrating the partial differential 
equation governing CP over the time-dependent volume of interest V(t )  and manipulating the 
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result into a convenient form. The manipulations are principally of two types: first, the divergence 
theorem is invoked to convert volume integrals into integrals over the bounding surface S( t )  , and 
second, the equation relating integrals of time derivatives to the time derivative of the integral and 
a contribution from the moving boundaries is used, 

In equation (4), dz represents a volume element of V ( t )  and dAi is the ith component of the 
outward-pointing surface-element vector; Vsi is the ith component of the boundary velocity. 

Governing partial diyerential equations 

The set of equations considered is the compressible continuity and momentum equations 
together with a two-equation k--E turbulence model. The approach applies equally well to any 
other set of partial differential equations. We use (without loss of generality) the ensemble- 
averaged form of the equations: angled brackets ( ) denote conventional (volume) averages 
while a tilde is used for density-weighted (Favre) averages. A double prime denotes a fluctuation 
with respect to a Favre mean quantity. Fluid density, pressure, velocity and viscosity are denoted 
by p ,  p, U and p, respectively; k and E are the turbulence kinetic energy and its dissipation rate. 
Details can be found in Reference 3. 

The ensemble-averaged continuity and momentum equations are 

In equation (6), the effective stress ?eff j i  is the sum of a turbulent stress or Reynolds stress qji and 
the mean viscous stress, teff j i  = ft ji + (z j i ) .  The turbulent stress is treated using a standard 
two-equation k--E turbulence model," 

- 
where k = ui ui /2 is the turbulence kinetic energy, pt is the turbulent viscosity and C, is a model 
constant. To complete the model, equations governing the evolution of k and E are needed. Here 
we are concerned primarily with the k equation, 

where perf = p, + p. The dissipation equation and values of all model constants are those suggested 
by El Tahry" for modelling studies of in-cylinder flows. 

In equation (8), the penultimate term represents the production of turbulence kinetic energy by 
interaction of the turbulent velocity fluctuations hith mean velocity gradients. It is useful to 
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expand this term into three parts using equation (7), 

Global balance equations 

linear momentum (a = <p)gi is the mean linear momentum per unit volume), 
The procedure outlined above is applied to equation (6) to yield the global balance of mean 

IMBAL = D/DT - FLUX- PRES - SHEAR. (10) 
Here oz, represents the j th  component of the mean fluid velocity relative to the boundary, 
Urel j=  U j -  VBp The names assigned on the second line of equation (10) are used to distinguish 
the various contributions in the presentation of results (Section 5). IMBAL is the global 
imbalance in a numerical computation of equation (10). 

A global mass-averaged turbulence kinetic energy 

- 

is defined as 

where m is the total fluid mass in V(t), m=j , ( , ) (p)  dr. The equation governing G is derived by 
integrating and manipulating equation (S), 

IMBAL = D/DT- FLUX - SHEAR - PR1- PR2 - PR3 -DISS -DMDT. (12) 
Global balance equations for derived quantities can also be found. Two quantities of particular 

interest for physical and numerical diagnostics are the angular momentum and the mean kinetic 
energy, respectively. The kth component of mean angular momentum of a fluid volume element 
dz about a point Q is given by dHk=(p) & i j k q $ o j  dz, where r is a position vector from origin 
Q and &ijk is the alternating tensor. The global mean angular momentum balance results from 
taking r x equation (6) and integrating 

IMBAL = D/DT- FLUX - PRES - SHEAR. (13) 
The final balance is that for global mean kinetic energy R, 
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The equation governing 
integrating over the volume V(t) and manipulating the result, 

is derived by taking the inner product of fj with equation (6), 

IMBAL=D/DT-FLUX-PRES-PDIV-PR1 -PR2-PR3-SHEAR-DMDT.(15) 

Higher moments such as K are expected to be sensitive indicators of numerical accuracy. 
A convenient single-number representation of the contribution of each physical process and of 

numerical accuracy is the normalized time integral of the absolute value of the corresponding 
term in the global balance equation. For equation (lo), for example, 

and similarly for equations (12), (13) and (15). Each term in equation (16) represents the 
magnitude of that term relative to the time-rate-of-change. Clearly D/DT = 1. Further discussion 
of these balances can be found in Section 5 of this paper and in Reference 3. 
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